In this section, we look at the remaining four formulas from part 13, reducing them modulo
- 5k/2
F (kn + m) =∑0 ≤ j ≤ k ( k j ) F ( j + m ) L(n) j L(n−1)k−j, for k even.
5(k+1)/2 F(kn+m)
= ∑0 ≤ j ≤ k ( k j ) L( j+m ) L(n) j L(n−1)k−j, for k odd.
- 5k/2
L (kn + m) =∑0 ≤ j ≤ k ( k j ) L ( j + m ) L(n) j L(n−1)k−j, for k even.
5(k−1)/2 L(kn+m)
= ∑0 ≤ j ≤ k ( k j ) F( j+m ) L(n) j L(n−1)k−j, for k odd.
Each term in each of these sums is a multiple of
5k/2 F (kn + m) ≡F ( m ) L(n−1)k (mod L(n)), for k even.
5(k+1)/2 F(kn+m) ≡L( m ) L(n−1)k (mod L(n)), for k odd.
5k/2 L (kn + m) ≡L ( m ) L(n−1)k (mod L(n)), for k even.
5(k−1)/2 L(kn+m) ≡F( m ) L(n−1)k (mod L(n)), for k odd.
Simplify these using the congruence
5k/2 F (kn + m) ≡F (m) ( 5 (−1)n+1 )k/2 (mod L(n)),for k even.
5(k+1)/2 F(kn+m) ≡L(m) L(n−1) ( 5 (−1)n+1 )(k−1)/2 (mod L(n)),for k odd.
5k/2 L (kn + m) ≡L (m) ( 5 (−1)n+1 )k/2 (mod L(n)),for k even.
5(k−1)/2 L(kn+m) ≡F(m) L(n−1) ( 5 (−1)n+1 )(k−1)/2 (mod L(n)),for k odd.
Now, L(n) is relatively prime to every power of 5, so we can conclude:
F(kn + m) ≡(−1)(n+1)k/2 F (m) (mod L(n)), for k even.
5 F(kn+m) ≡(−1)(n+1)(k−1)/2 L(m) L(n−1) (mod L(n)), for k odd.
L(kn + m) ≡(−1)(n+1)k/2 L(m) (mod L(n)),for k even.
L(kn+m) ≡(−1)(n+1)(k−1)/2 F(m) L(n−1) (mod L(n)),for k odd.
No comments:
Post a Comment