Friday, August 6, 2010

FT15: F(kn+m) and L(kn+m) mod L(n )

In this section, we look at the remaining four formulas from part 13, reducing them modulo L(n):

  • 5k/2 F (kn + m) = 0 ≤ jk (  k   j  ) F ( j + m ) L(n) j L(n−1)kj, for k even.
  • 5(k+1)/2 F(kn+m)
    = ∑0 ≤ jk (  k   j  ) L( j+m ) L(n) j L(n−1)kj, for k odd.
  • 5k/2 L (kn + m) = 0 ≤ jk (  k   j  ) L ( j + m ) L(n) j L(n−1)kj, for k even.
  • 5(k−1)/2 L(kn+m)
    = ∑0 ≤ jk (  k   j  ) F( j+m ) L(n) j L(n−1)kj, for k odd.

Each term in each of these sums is a multiple of L(n), with the possible exception of the terms with j=0. So we get the following congruences:

  • 5k/2 F (kn + m) F ( m ) L(n−1)k (mod L(n)), for k even.
  • 5(k+1)/2 F(kn+m) L( m ) L(n−1)k (mod L(n)), for k odd.
  • 5k/2 L (kn + m) L ( m ) L(n−1)k (mod L(n)), for k even.
  • 5(k−1)/2 L(kn+m) F( m ) L(n−1)k (mod L(n)), for k odd.

Simplify these using the congruence L(n−1)2 5 (−1)n+1 (mod L(n)):

  • 5k/2 F (kn + m) F (m) (5 (−1)n+1)k/2 (mod L(n)), for k even.
  • 5(k+1)/2 F(kn+m) L(m) L(n−1) (5 (−1)n+1)(k−1)/2 (mod L(n)), for k odd.
  • 5k/2 L (kn + m) L (m) (5 (−1)n+1)k/2 (mod L(n)), for k even.
  • 5(k−1)/2 L(kn+m) F(m) L(n−1) (5 (−1)n+1)(k−1)/2 (mod L(n)), for k odd.

Now, L(n) is relatively prime to every power of 5, so we can conclude:

  • F(kn + m) (−1)(n+1)k/2 F (m) (mod L(n)), for k even.
  • 5 F(kn+m) (−1)(n+1)(k−1)/2 L(m) L(n−1) (mod L(n)), for k odd.
  • L(kn + m) (−1)(n+1)k/2 L(m) (mod L(n)), for k even.
  • L(kn+m) (−1)(n+1)(k−1)/2 F(m) L(n−1) (mod L(n)), for k odd.

No comments:

Post a Comment