Friday, August 6, 2010

FT13: Summary of Formulas for F(kn+m) and L(kn+m)

The previous two sections covered a variety of formulas for F(kn+m) and L(kn+m); we summarize them here.


Formulas for the Fibonacci numbers:

  • F (kn + m) = 0 ≤ jk (  k   j  ) F ( j + m ) F(n) j F(n−1)kj, for any k.
  • 5k/2 F (kn + m) = 0 ≤ jk (  k   j  ) F ( j + m ) L(n) j L(n−1)kj, for k even.
  • 5(k+1)/2 F(kn+m)
    = ∑0 ≤ jk (  k   j  ) L( j+m ) L(n) j L(n−1)kj, for k odd.


Formulas for the Lucas numbers:

  • L (kn + m) = 0 ≤ jk (  k   j  ) L ( j + m ) F(n) j F(n−1)kj, for any k.
  • 5k/2 L (kn + m) = 0 ≤ jk (  k   j  ) L ( j + m ) L(n) j L(n−1)kj, for k even.
  • 5(k−1)/2 L(kn+m)
    = ∑0 ≤ jk (  k   j  ) F( j+m ) L(n) j L(n−1)kj, for k odd.

No comments:

Post a Comment