The previous two sections covered a variety of formulas for F(kn+m) and L(kn+m); we summarize them here.
Formulas for the Fibonacci numbers:
F (kn + m) =∑0 ≤ j ≤ k ( k j ) F ( j + m ) F(n) j F(n−1)k−j, for any k.
- 5k/2
F (kn + m) =∑0 ≤ j ≤ k ( k j ) F ( j + m ) L(n) j L(n−1)k−j, for k even.
5(k+1)/2 F(kn+m)
= ∑0 ≤ j ≤ k ( k j ) L( j+m ) L(n) j L(n−1)k−j, for k odd.
Formulas for the Lucas numbers:
L (kn + m) =∑0 ≤ j ≤ k ( k j ) L ( j + m ) F(n) j F(n−1)k−j, for any k.
- 5k/2
L (kn + m) =∑0 ≤ j ≤ k ( k j ) L ( j + m ) L(n) j L(n−1)k−j, for k even.
5(k−1)/2 L(kn+m)
= ∑0 ≤ j ≤ k ( k j ) F( j+m ) L(n) j L(n−1)k−j, for k odd.
No comments:
Post a Comment